abstract class Iso_[S, T, A, B] extends Iso0[S, T, A, B]
An Iso_ is a generalized isomorphism.
An Iso_ is a complete reversible transformation between two types.
- S
the source of an Iso_
- T
the modified source of an Iso_
- A
the focus of an Iso_
- B
the modified focus of a Iso_
- Alphabetic
- By Inheritance
- Iso_
- Iso0
- Review0
- Getter1
- Getter0
- Serializable
- Traversal0
- Setter0
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new Iso_()
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def andThen[I, C, D](other: IndexedFold_[I, A, B, C, D]): IndexedFold_[I, S, T, C, D]
compose this Iso_ with an IndexedFold_, having this Iso_ applied first
- final def andThen[I, C, D](other: IndexedGetter_[I, A, B, C, D]): IndexedFold_[I, S, T, C, D]
compose this Iso_ with an IndexedGetter_, having this Iso_ applied first
- final def andThen[I, C, D](other: IndexedSetter_[I, A, B, C, D]): IndexedSetter_[I, S, T, C, D]
compose this Iso_ with an IndexedFold_, having this Iso_ applied first
- final def andThen[I, C, D](other: IndexedTraversal_[I, A, B, C, D]): IndexedTraversal_[I, S, T, C, D]
compose this Iso_ with an IndexedTraversal_, having this Iso_ applied first
- final def andThen[I, C, D](other: AnIndexedLens_[I, A, B, C, D]): AnIndexedLens_[I, S, T, C, D]
compose this Iso_ with an AnIndexedLens_, having this Iso_ applied first
- final def andThen[I, C, D](other: IndexedLens_[I, A, B, C, D]): IndexedLens_[I, S, T, C, D]
compose this Iso_ with an IndexedLens_, having this Iso_ applied first
- final def andThen[C, D](other: Review_[A, B, C, D]): Review_[S, T, C, D]
compose this Iso_ with a Review_, having this Iso_ applied first
- final def andThen[C, D](other: Grate_[A, B, C, D]): Grate_[S, T, C, D]
compose this Iso_ with a Grate_, having this Iso_ applied first
- final def andThen[C, D](other: Fold_[A, B, C, D]): Fold_[S, T, C, D]
compose this Iso_ with a Fold_, having this Iso_ applied first
- final def andThen[C, D](other: Getter_[A, B, C, D]): Getter_[S, T, C, D]
compose this Iso_ with a Getter_, having this Iso_ applied first
- final def andThen[C, D](other: Setter_[A, B, C, D]): Setter_[S, T, C, D]
compose this Iso_ with a Setter_, having this Iso_ applied first
- final def andThen[C, D](other: ATraversal_[A, B, C, D]): ATraversal_[S, T, C, D]
compose this Iso_ with an ATraversal_, having this Iso_ applied first
- final def andThen[C, D](other: Traversal_[A, B, C, D]): Traversal_[S, T, C, D]
compose this Iso_ with a Traversal_, having this Iso_ applied first
- final def andThen[C, D](other: AnAffineTraversal_[A, B, C, D]): AnAffineTraversal_[S, T, C, D]
compose this Iso_ with an AnAffineTraversal_, having this Iso_ applied first
- final def andThen[C, D](other: AffineTraversal_[A, B, C, D]): AffineTraversal_[S, T, C, D]
compose this Iso_ with an AffineTraversal_, having this Iso_ applied first
- final def andThen[C, D](other: APrism_[A, B, C, D]): APrism_[S, T, C, D]
compose this Iso_ with an APrism_, having this Iso_ applied first
- final def andThen[C, D](other: Prism_[A, B, C, D]): Prism_[S, T, C, D]
compose this Iso_ with a Prism_, having this Iso_ applied first
- final def andThen[C, D](other: ALens_[A, B, C, D]): ALens_[S, T, C, D]
compose this Iso_ with an ALens_, having this Iso_ applied first
- final def andThen[C, D](other: Lens_[A, B, C, D]): Lens_[S, T, C, D]
compose this Iso_ with a Lens_, having this Iso_ applied first
- final def andThen[C, D](other: AnIso_[A, B, C, D]): AnIso_[S, T, C, D]
compose this Iso_ with an AnIso_, having this Iso_ applied first
- final def andThen[C, D](other: Iso_[A, B, C, D]): Iso_[S, T, C, D]
compose this Iso_ with an Iso_, having this Iso_ applied first
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- final def compose[I, C, D](other: IndexedFold_[I, C, D, S, T]): IndexedFold_[I, C, D, A, B]
compose this Iso_ with an IndexedFold_, having this Iso_ applied last
- final def compose[I, C, D](other: IndexedGetter_[I, C, D, S, T]): IndexedFold_[I, C, D, A, B]
compose this Iso_ with an IndexedGetter_, having this Iso_ applied last
- final def compose[I, C, D](other: IndexedSetter_[I, C, D, S, T]): IndexedSetter_[I, C, D, A, B]
compose this Iso_ with an IndexedFold_, having this Iso_ applied last
- final def compose[I, C, D](other: IndexedTraversal_[I, C, D, S, T]): IndexedTraversal_[I, C, D, A, B]
compose this Iso_ with an IndexedTraversal_, having this Iso_ applied last
- final def compose[I, C, D](other: AnIndexedLens_[I, C, D, S, T]): AnIndexedLens_[I, C, D, A, B]
compose this Iso_ with an AnIndexedLens_, having this Iso_ applied last
- final def compose[I, C, D](other: IndexedLens_[I, C, D, S, T]): IndexedLens_[I, C, D, A, B]
compose this Iso_ with an IndexedLens_, having this Iso_ applied last
- final def compose[C, D](other: Review_[C, D, S, T]): Review_[C, D, A, B]
compose this Iso_ with a Review_, having this Iso_ applied last
- final def compose[C, D](other: Grate_[C, D, S, T]): Grate_[C, D, A, B]
compose this Iso_ with a Grate_, having this Iso_ applied last
- final def compose[C, D](other: Fold_[C, D, S, T]): Fold_[C, D, A, B]
compose this Iso_ with a Fold_, having this Iso_ applied last
- final def compose[C, D](other: Getter_[C, D, S, T]): Getter_[C, D, A, B]
compose this Iso_ with a Getter_, having this Iso_ applied last
- final def compose[C, D](other: Setter_[C, D, S, T]): Setter_[C, D, A, B]
compose this Iso_ with a Setter_, having this Iso_ applied last
- final def compose[C, D](other: ATraversal_[C, D, S, T]): ATraversal_[C, D, A, B]
compose this Iso_ with an ATraversal_, having this Iso_ applied last
- final def compose[C, D](other: Traversal_[C, D, S, T]): Traversal_[C, D, A, B]
compose this Iso_ with a Traversal_, having this Iso_ applied last
- final def compose[C, D](other: AnAffineTraversal_[C, D, S, T]): AnAffineTraversal_[C, D, A, B]
compose this Iso_ with an AnAffineTraversal_, having this Iso_ applied last
- final def compose[C, D](other: AffineTraversal_[C, D, S, T]): AffineTraversal_[C, D, A, B]
compose this Iso_ with an AffineTraversal_, having this Iso_ applied last
- final def compose[C, D](other: APrism_[C, D, S, T]): APrism_[C, D, A, B]
compose this Iso_ with an APrism_, having this Iso_ applied last
- final def compose[C, D](other: Prism_[C, D, S, T]): Prism_[C, D, A, B]
compose this Iso_ with a Prism_, having this Iso_ applied last
- final def compose[C, D](other: ALens_[C, D, S, T]): ALens_[C, D, A, B]
compose this Iso_ with an ALens_, having this Iso_ applied last
- final def compose[C, D](other: Lens_[C, D, S, T]): Lens_[C, D, A, B]
compose this Iso_ with a Lens_, having this Iso_ applied last
- final def compose[C, D](other: AnIso_[C, D, S, T]): AnIso_[C, D, A, B]
compose this Iso_ with an AnIso_, having this Iso_ applied last
- final def compose[C, D](other: Iso_[C, D, S, T]): Iso_[C, D, A, B]
compose this Iso_ with an Iso_, having this Iso_ applied last
- final def contains(a: A)(s: S)(implicit ev: Eq[A]): Boolean
test whether the focus of a Getter contains a given value
test whether the focus of a Getter contains a given value
- Definition Classes
- Getter0
- final def cotraverse[F[_]](fs: F[S])(f: (F[A]) => B)(implicit ev: Applicative[F]): T
modify an effectful focus of an Iso_ to the type of the modified focus, resulting in a change of type to the full structure
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def exists(f: (A) => Boolean): (S) => Boolean
test whether a predicate holds for the focus of a Getter
test whether a predicate holds for the focus of a Getter
- Definition Classes
- Getter0
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- final def find(f: (A) => Boolean): (S) => Option[A]
find the first focus of a Getter that satisfies a predicate, if there is any
find the first focus of a Getter that satisfies a predicate, if there is any
- Definition Classes
- Getter1 → Getter0
- final def focus[C, D](f: (A) => C): Getter_[S, T, C, D]
compose this Iso_ with a function lifted to a Getter_, having this Iso_ applied first
- def foldMap[R](s: S)(f: (A) => R)(implicit arg0: Monoid[R]): R
- Attributes
- protected
- Definition Classes
- Traversal0
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notContains(a: A)(s: S)(implicit ev: Eq[A]): Boolean
test whether the focus of a Getter does not contain a given value
test whether the focus of a Getter does not contain a given value
- Definition Classes
- Getter0
- final def notExists(f: (A) => Boolean): (S) => Boolean
test whether a predicate does not hold for the focus of a Getter
test whether a predicate does not hold for the focus of a Getter
- Definition Classes
- Getter0
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def over(f: (A) => B): (S) => T
modify the focus type of an Iso_ using a function, resulting in a change of type to the full structure
- final def overF[F[_]](f: (A) => F[B])(s: S)(implicit arg0: Applicative[F]): F[T]
synonym for traverse, flipped
synonym for traverse, flipped
- Definition Classes
- Traversal0
- final def reverse: Iso_[B, A, T, S]
reverse an Iso_ by swapping the source and the focus
- final def review(b: B): T
view the modified source of an Iso_
- final def set(b: B): (S) => T
set the modified focus of a Setter
set the modified focus of a Setter
- Definition Classes
- Setter0
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def traverse[F[_]](s: S)(f: (A) => F[B])(implicit ev: Applicative[F]): F[T]
modify the focus type of an Iso_ using a cats.Functor, resulting in a change of type to the full structure
modify the focus type of an Iso_ using a cats.Functor, resulting in a change of type to the full structure
- Definition Classes
- Iso_ → Traversal0
- final def use(implicit ev: State[S, A]): State[S, A]
view the focus of a Getter in the state of a monad
view the focus of a Getter in the state of a monad
- Definition Classes
- Getter1
- final def view(s: S): A
view the focus of an Iso_
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def zipWith(s1: S, s2: S)(f: (A, A) => B): T
zip two sources of an Iso_ together provided a binary operation which modify the focus type of an Iso_
- final def zipWithF[F[_]](f: (F[A]) => B)(fs: F[S])(implicit arg0: Applicative[F]): T
synonym for cotraverse, flipped